Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly:  implications for amyloid fibril formation and materials science.

نویسندگان

  • H A Lashuel
  • S R Labrenz
  • L Woo
  • L C Serpell
  • J W Kelly
چکیده

Deciphering the mechanism(s) of β-sheet mediated self-assembly is essential for understanding amyloid fibril formation and for the fabrication of polypeptide materials. Herein, we report a simple peptidomimetic that self-assembles into polymorphic β-sheet quaternary structures including protofilaments, filaments, fibrils, and ribbons that are reminiscent of the highly ordered structures displayed by the amyloidogenic peptides Aβ, calcitonin, and amylin. The distribution of quaternary structures can be controlled by and in some cases specified by manipulating the pH, buffer composition, and the ionic strength. The ability to control β-sheet-mediated assembly takes advantage of quaternary structure dependent pK(a) perturbations. Biophysical methods including analytical ultracentrifugation studies as well as far-UV circular dichroism and FT-IR spectroscopy demonstrate that linked secondary and quaternary structural changes mediate peptidomimetic self-assembly. Electron and atomic force microscopy reveal that peptidomimetic assembly involves numerous quaternary structural intermediates that appear to self-assemble in a convergent fashion affording quaternary structures of increasing complexity. The ability to control the assembly pathway(s) and the final quaternary structure(s) afforded should prove to be particularly useful in deciphering the quaternary structural requirements for amyloid fibril formation and for the construction of noncovalent macromolecular structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions.

The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociatio...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation.

Analytical ultracentrifugation methods were utilized to further characterize the acid denaturation pathways of wild-type, V30M, and L55P transthyretin (TTR) that generate intermediates leading to amyloid fibril formation and possibly the diseases senile systemic amyloidosis and familial amyloid polyneuropathy. Equilibrium and velocity methods were employed herein to characterize the TTR quatern...

متن کامل

A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy.

Based on atomic force microscopy analysis of the morphology of fibrillar species formed during fibrillation of alpha-synuclein, insulin, and the B1 domain of protein G, a previously described model for the assembly of amyloid fibrils of immunoglobulin light-chain variable domains is proposed as a general model for the assembly of protein fibrils. For all of the proteins studied, we observed two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 122 22  شماره 

صفحات  -

تاریخ انتشار 2000